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(1) Consider the equivalence relation on R2 given by (a1, b1) ≡ (a2, b2) iff
b1 − a1 = b2 − a2. The equivalence classes of this relation are the family
of lines y = x+ c for c ∈ R.

(2) Given m,n ∈ N and d = gcd(m,n). Then d = am+ bn for some a, b ∈ Z.
Let q be any other common divisor of m and n. Then q divides am+ bn,
this implies q divides d.

(3) Clearly, e ∈ G and for any x ∈ G, x−1 ∈ G. We only need to check that
the aforementioned elements are respectively the identity and the inverse
under the new operation }. We have x} e = e • x = x = x • e = e} x for
x ∈ G and x} x−1 = x−1 • x = e = x • x−1 = x−1 } x.

(4) Suppose d|n and let Cn =< a > then, an/d ∈ Cn is an element of order
exactly d. The subgroup H =< an/d > is a subgroup of G of order d.
Let K be any other subgroup of order d. Clearly, K =< ak > for some k
dividing n. This implies that d = |K| = o(ak) = n/k. Thus, k = n/d and
K = H. This proves uniqueness.

(5) G acts on itself by inner conjugation. For any g ∈ G, the element gg0g
−1

has order 2 as g0 has order 2 for, (gg0g
−1)2 = gg20g

−1 = e. Since g0 is an
unique element of order 2, one has gg0g

−1 = g0 for every g ∈ G.

(6) Cauchy’s theorem states that if G is a finite group and p is a prime dividing
order of G then, G has an element of order p. As 2 and 3 are primes
dividing 6, there exists elements of order 2, 3 in a group G of order 6.

(7) A cycle of length l in Sn is 1-1 onto mapping on {1, ..., n} such that
it maps a subset S of {1, ..., , n} containing exactly l distinct elements
{a0, ..., al−1} onto itself and fixes all elements outside S. Such a cycle
is notated (a0, ...., al−1). Let σ = (a0, ..., al−1) be an l-cycle and let k
be its order. If 0 < k < l, then σk(a0) = ak, But a0 6= ak and so
σk 6= 1. This implies k > n. Further, σk(aj) = aj+k(mod l) implies σl

is identity. As σ fixes all elements outside {a0, ..., al−1}, σn also fixes
those elements. Hence, from the above observations and as order of a
permutation σ is the smallest positive integer n such that σn = 1, we
conclude that order of σ is l. Now, let σ be any permutation in Sn. Let
α ∈ {1, ..., n} and Cα = (α, σα, σ2α, ..., σkα) be orbit of α where k is such
that sigmakα = α. Clearly, Cα is a k-cycle. Next choose β ∈ {1, ..., n}
such that β /∈ Cα. Let Cβ = {β, σβ, σ2β, ..., σlβ} be the orbit of β with
σlβ = β. As before Cl is an l-cycle disjoint from Cα. Continue this process
to obtain σ = CαCβ...Cγ . This process terminates as the set {1, ..., n}
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is finite and as σ is an arbitrary permutation of Sn, one concludes that
every permutation of Sn can be written as product of disjoint cycles.

(8) By Cauchy’s theorem if a prime p divides order of a finite group G then
G has an element a of order p. One has < a > is a subgroup of G. By
Lagrange’s theorem the order of a subgroup divides the order of a group.
Thus, if |G| = p then | < a > | = p if a is nonidentity element. Hence,
upto isomorphism there exists an unique cyclic group of order 2, 3 and
5. Clearly, G = {e} is the unique group of order 1. Coming to groups
of order 4 = 22, we assert that every group G of order 4 is abelian. In
fact, suppose G is not abelian, then there exists non identity elements
a, b ∈ G such that ab 6= ba. Clearly, b 6= a−1 so that ab 6= 1 6= ba.
Also, ab 6= a 6= ba for otherwise b = e. Similarly, ab 6= b 6= ba. This
gives 5 distinct elements e, a, b, ab, ba in the group G of order 4 which is
a contradiction. Now, each nonidentity element of G has order 2 or 4. If
a 6= e has order 4 then G =< a > is the cyclic group of order 4. If a 6= e
has order 2 then H =< a > is a subgroup of G of order 2. Let b ∈ G be
such that b /∈ H, i.e., b 6= e. As o(b) divides 4 and b cannot have order 4
( because then G will end up having more than 4 elements), we conclude
o(b) = 2. Further, the third nonidentity element, say c, also has order 2.
We assert that c = ab. If ab = e then b = a−1 contradicts b = b−1. If
ab = a then b = e and if ab = b then a = e contradicts the assumtion
that a, b are nonidentity elements. Thus ab = c = ba. Arguing as above,
we have bc = a = cb and ac = b = ca. This gives the Klein-4-group
{e, a, b, c} isomorphic to Z2 × Z2 under the mapping f : G 7−→ Z2 × Z2

with f(e) = (0, 0), f(a) = (1, 0), f(b) = (0, 1) and f(c) = (1, 1).
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