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Consider the equivalence relation on R? given by (ai,b;) = (ag,bs) iff
b1 — a1 = by — as. The equivalence classes of this relation are the family
of lines y = x + ¢ for c € R.

Given m,n € N and d = ged(m,n). Then d = am + bn for some a,b € Z.
Let ¢ be any other common divisor of m and n. Then ¢ divides am + bn,
this implies ¢ divides d.

Clearly, e € G and for any x € G, x=! € G. We only need to check that
the aforementioned elements are respectively the identity and the inverse
under the new operation ©®. We have r@e =cex =z =xee =e©®x for
rcGandzoer =z ler=c=zex =102

Suppose d|n and let C,, =< a > then, a™/¢ € C,, is an element of order
exactly d. The subgroup H =< a™/¢ > is a subgroup of G of order d.
Let K be any other subgroup of order d. Clearly, K =< a* > for some k
dividing n. This implies that d = |K| = o(a*) = n/k. Thus, k = n/d and
K = H. This proves uniqueness.

G acts on itself by inner conjugation. For any g € G, the element ggog~*

has order 2 as gg has order 2 for, (9909~ 1)% = ggdg~! = e. Since go is an
unique element of order 2, one has ggog~! = go for every g € G.

Cauchy’s theorem states that if G is a finite group and p is a prime dividing
order of G then, G has an element of order p. As 2 and 3 are primes
dividing 6, there exists elements of order 2, 3 in a group G of order 6.

A cycle of length 1 in S, is 1-1 onto mapping on {1,...,n} such that

it maps a subset S of {1,...,,n} containing exactly 1 distinct elements
{ag, ...,a;—1} onto itself and fixes all elements outside S. Such a cycle
is notated (ag,....,a;—1). Let 0 = (ag,...,a;—1) be an l-cycle and let k

be its order. If 0 < k < I, then 0¥(ag) = ap, But ag # aj and so
ok # 1. This implies k > n. Further, 0*(a;) = aj k(mod 1) implies o
is identity. As o fixes all elements outside {ag,...,a;—1}, o™ also fixes
those elements. Hence, from the above observations and as order of a
permutation o is the smallest positive integer n such that ¢™ = 1, we
conclude that order of ¢ is [. Now, let o be any permutation in S,. Let
a€{l,..,n}and C, = (o, 00, 0%q, ...,c"a) be orbit of a where k is such
that sigma®a = a. Clearly, C,, is a k-cycle. Next choose 3 € {1,...,n}
such that 8 ¢ C,. Let Cg = {B,08,028,...,0' 8} be the orbit of 8 with
0!8 = B. As before C; is an I-cycle disjoint from C,,. Continue this process
to obtain 0 = C,Cp...C,. This process terminates as the set {1,...,n}



is finite and as o is an arbitrary permutation of S,,, one concludes that
every permutation of S,, can be written as product of disjoint cycles.

By Cauchy’s theorem if a prime p divides order of a finite group G then
G has an element a of order p. One has < a > is a subgroup of G. By
Lagrange’s theorem the order of a subgroup divides the order of a group.
Thus, if |G| = p then | < @ > | = p if a is nonidentity element. Hence,
upto isomorphism there exists an unique cyclic group of order 2, 3 and
5. Clearly, G = {e} is the unique group of order 1. Coming to groups
of order 4 = 22, we assert that every group G of order 4 is abelian. In
fact, suppose G is not abelian, then there exists non identity elements
a,b € G such that ab # ba. Clearly, b # a~! so that ab # 1 # ba.
Also, ab # a # ba for otherwise b = e. Similarly, ab # b # ba. This
gives 5 distinct elements e, a, b, ab, ba in the group G of order 4 which is
a contradiction. Now, each nonidentity element of G has order 2 or 4. If
a # e has order 4 then G =< a > is the cyclic group of order 4. If a # e
has order 2 then H =< a > is a subgroup of G of order 2. Let b € G be
such that b ¢ H, i.e., b # e. As o(b) divides 4 and b cannot have order 4
( because then G will end up having more than 4 elements), we conclude
o(b) = 2. Further, the third nonidentity element, say ¢, also has order 2.
We assert that ¢ = ab. If ab = e then b = a~! contradicts b = b~'. If
ab = a then b = e and if ab = b then a = e contradicts the assumtion
that a,b are nonidentity elements. Thus ab = ¢ = ba. Arguing as above,
we have bc = a = ¢b and ac = b = ca. This gives the Klein-4-group
{e,a,b,c} isomorphic to Zs X Zs under the mapping f : G — Zy X Zs
with f(e) = (0,0), f(a) = (1,0), f(b) = (0,1) and f(c) = (1,1).



